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Abstract
Pope, David (M.S., Department of Aerospace Engineering Sciences)
Implementing a Loosely Coupled Fluid Structure Interaction Finite Element Model in
PHASTA
Thesis directed by Professor Kenneth Jansen

Fluid Structure Interaction problems are an important multi-physics phenomenon in
the design of aerospace vehicles and other engineering applications. A variety of computa-
tional fluid dynamics solvers capable of resolving the fluid dynamics exist. PHASTA is one
such computational fluid dynamics solver. Enhancing the capability of PHASTA to resolve
Fluid-Structure Interaction first requires implementing a structural dynamics solver. The
implementation also requires a correction of the mesh used to solve the fluid equations to
account for the deformation of the structure. This results in mesh motion and causes the
need for an Arbitrary Lagrangian-Eulerian modification to the fluid dynamics equations
currently implemented in PHASTA. With the implementation of both structural dynam-
ics physics, mesh correction, and the Arbitrary Lagrangian-Eulerian modification of the
fluid dynamics equations, PHASTA is made capable of solving Fluid-Structure Interaction
problems.
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1 Introduction

The dynamics of a structural system in the presence of a fluid exerting forces on the
structural body is an important multi-physics modeling problem. As the structure deforms,
changes in the flow of the fluid around the structural body occur, causing a change in the
forces exerted on the structure. This non-linear relation to the structural deformation
caused by aerodynamic forces is relevant across a variety of engineering fields. In civil
engineering, the forces due to winds on large structures such as skyscrapers or suspension
bridges should be accounted for to ensure that oscillations of the structure due to strong
winds stay within structural tolerances. In aerospace engineering, the problem is especially
relevant, particularly as it concerns flutter on lifting surfaces. To address these structural
forces and possible divergent dynamic modes, a coupled system is needed that accounts for
the changing forces exerted on the structure.

The modeling of both fluid flows and structural systems on computer systems is com-
monly done using Finite Element Methods. Other methods are available, such as Finite
Difference Methods, but this paper focuses solely on the Finite Element Method, and
specifically on the implementation of fluid structure interactions in the high fidelity fluid
dynamics solver PHASTA.

Multiple methods for formulating a fluid structure system have been considered using
the finite element method. In a fully coupled system, the fluid and structural equations of
motion are formulated as one system of equations[1]. Another alternative for resolving fluid
structure interaction is to account for fluid loading in a non-linear finite element model[2].

However, this thesis exams modeling fluid structure interaction by coupling independent
structural and fluid finite element solvers. A simple linear dynamic finite element solver is
coupled with PHASTA, a complex finite element fluid solver. The structural displacements
of the structure interact with the fluid solver by deforming the mesh on the boundaries of
the fluid domain, while the fluid solver interacts with the structural solver by passing fluid
forces exerted on the structural domain to the structural solver.

This thesis will examine the utility of such a fluid-structure interaction model, specif-
ically the data structures necessary for implementation of the loosely coupled system in
PHASTA.

2 Formulation of Equations

2.1 Fluid Equations

PHASTA uses the Navier-Stokes equations to resolve fluid flow. The Navier-Stokes equa-
tions are the standard equations used to express fluid dynamics. The Navier-Stokes equa-
tions are conservation of momentum, conservation of energy and continuity. The continuity

1
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equation is described as[3]:

ρ,t +
3∑
i=1

(ρui),i = 0 (1)

The conservation of momentum equations can be express as:

[ρUj ],t +
3∑
i=1

[ρuiuj ],i + P,j =
3∑
i=1

τij,i + bj (2)

Finally, the conservation of energy equations can be described as:

[ρetot]t +

3∑
i=1

[ρuietot],i +

3∑
i=1

[uiP ],i =

3∑
i=1

3∑
j=1

[τijuj ],i −
3∑
i=1

qii +

3∑
j=1

bjuj + γ (3)

These equations can be express in a compact notation by introducing a new variable
vector, the flux vector, and a body force vector. The new variable vector is:

U =

 ρ
ρuj
ρetot

 (4)

The flux vector is:

F i =

 ρUi
ρUiUj
ρUietot

 +

 0
Pδij
PUi

−
 0

τij
τ + ijUj

 +

0
0
qi

 (5)

The body force vector is:

ϕ =

 0
bj

bjUj + r

 (6)

With these new variables, the Navier-Stokes equations can be expressed as:

U ,t + F i,i = ϕ (7)

It is convenient to express the flux vector in terms of advective and diffusive flux. Thus,
we express the total flux vector in terms of two new vectors.

F advi = uiU + P

 0
δij
ui

 (8)

2
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F diffi = −

 0
τij
uiτij

 +

0
0
qi

 (9)

With these two flux vectors expressed independently, the Navier-Stokes equations are
written as

U ,t + F advi,i + F diffi,i = ϕ (10)

This expression of the Navier stokes equation must now be converted from five general
partial differential equations to the finite element form. First, all terms are moved to the
left hand side.

U .t + F i,i − ϕ = 0 (11)

Now the equations are multiplied by a weight function W. This can be considered an
arbitrary function at this stage. This equation is then integrated over the entire fluid
domain. ∫

Ω
W [U ,t + F i,i − ϕ] = 0 (12)

Distributing the weight function and using the product rule leads to the weak Galerkin
formulation of the Navier-Stokes equations.∫

Ω
W · U ,tdΩ−

∫
Ω
W ,i · F idΩ−

∫
Ω
W · ϕdΩ +

∫
Γ
W · F inidΓ = 0 (13)

Using the finite element method, the values of the solution are sought at discrete nodal
points. The values can be interpolated to any arbitrary location with a function of space.
The most common functions used are element shape functions[4] Using these shape func-
tions, the interpolated values for W

¯
and the derivatives of U

¯
at any location can be rewritten

in terms of the solution vector U.

W (x) =
n∑

B=1

NB(x)WB (14)

U ,t =

n∑
A=1

NAU,t (15)

U ,x =

n∑
A=1

NA,x(x)UA (16)

Then the weak Galerkin form of the Navier-Stokes equations can be rewritten.

3



www.manaraa.com

n∑
B=1

WB

∫
Ω
NB[

n∑
A=1

NAUA,t − ϕ(U)−NB,iF i(U)]dΩ +

∫
Γ
NBF i(U)nidΓ = 0 =

n∑
B=1

WBGB

(17)
Where GB is the residual.
This residual is formed at the element level according to

Geb =

∫
Ωe

[Nb

nen∑
a=1

NaU
e
a,t − ϕ(

nen∑
a=1

NaU
e
a)−Nb,iF i(

nen∑
a=1

NaU
e
a)]dΩe+

∫
Γe

NbF i(
nen∑
a=1

NaU
e
a)nidΓe

(18)
The local element residual is then stabilized according to the Streamline Upwind Petrov-

Galerkin (SUPG) method, and a stabilized element residual Ĝ
e
b is formed.

Ĝ
e
b = Geb +

∫
el
L̂Nb(ξ)τ [LU − ϕ(

nen∑
a=1

NaU
e
a)]D(ξ)d(el) (19)

Where the differential operators L̂ and L are defined:

L̂Nb = Ai(
nen∑
a=1

Na(ξ)U
e
a)Nb,ξeξl,i (20)

LU =
nen∑
a=1

NaU
e
a,t +Ai(

nen∑
c=1

NcU
e
c)

nen∑
a=1

Na,ξeξl,iU
e
a (21)

The variable vector U can be converted to an arbitrary variable vector Y . This re-
quires a series of transformations to change the dependance of the advective flux, diffusive
flux and body transformation terms from dependent on U to dependent on Y . These
transformations are summarized as:

U ,t = U ,Y Y,t = A0Y,t (22)

F advi,i = F advi,Y Y,i = AiY , i (23)

F diffi,i = −KijY,j (24)

With these variable transformations, the differential operator L can be expressed as:

LU = LY = [A0
∂

∂t
+Ai

∂

∂xi
− ∂

∂xj
[−Kij

∂

∂xj
]]Y (25)

4
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The variable A0 and Ai in (22) and (23) are transformation matrices necessary for the
transformation of the Navier-Stokes equations from the variable set U to the variable set
Y and should not be mistaken for the Ai matrices in (20) and (21) which are part the
linearization operator.

The element residual can be expressed in terms of variable Y according to:

Ĝ
e
b =

∫
el
Nb[A0Y,t − ϕ−Nb,iFi]d(el) +

∫
el
L̂Nbτ(LY − ϕ)d(el) +

∫
el
NbFiniDΓd(el)Γ (26)

The global residual vector ĜB is assembled from the element residual vectors. The
system of equations is then integrated in time using the generalized alpha method, a
predictor multi-corrector algorithm. First, the solution vector at the next time step is
predicted according to[3]:

Y n+1 = Y n + ∆tY n
,t + ∆tγ(Y n+1

,t − Y n
,t ) (27)

While requiring that:

ĜB(Y n+αf , Y n+αm
,t ) = 0 (28)

The values of Y at intermediate time steps αm and αf are found according to:

Y n+αm
,t = Y n

,t + αm[Y n+1
,t − Y n

,t ] (29)

Y n+αf = Y n + αf [Y n+1 − Y n] (30)

So from the initial guess for the values of the solution vector Y, the solution is cor-
rected iteratively using Newtons method, where the change in solution vector is found by
satisfying:

ĜB(Y n+αm
,t (i), Y n+αf (i)) +

n∑
a=1

∂Ĝ

∂Y n+αf (i)
)∆Y (i) = 0 (31)

Introducing a new symbol for the tangent matrix of the residual in terms of the solution
vector and the residual, the solution for each iteration can be described in a matrix equation
of the form AX=b.

∂Ĝ

∆Y n+αf (i)
= MAB (32)

ĜB(Y n+αm
,t (i), Y n+αf (i)) = RB (33)

5
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n∑
A=1

MBA∆Y = −RB (34)

Y (i+ 1) = Y (i) + ∆Y (i) (35)

In PHASTA, this is solved using the Generalized Modified Residual method (GMRES)[10]
for each iteration, and iterated until the residual is within a desired tolerance for each time
step.

2.2 Arbitrary Lagrangian Eulerian Fluid Modification

In fluid-structure interaction problems, the structural mesh will deform. Because fine
boundary layer meshes are desired to resolve the fluid flow near the border of the structure,
there is a risk of inverting fluid elements if the mesh is left in its original state. For this
reason, the fluid mesh is corrected at each time step so that it correctly adheres to the
structure boundary, and the fluid elements do not become inverted. This introduces a
velocity into the fluid mesh, and means that the Eulerian formulation will no longer be
accurate. With the Eulerian formulation as a baseline, the mesh velocity can be accounted
for by adapting to an Arbitrary Lagrangian-Eulerian (ALE) formulation. Starting with the
Navier-Stokes equations, where ẋ represents the mesh velocity, the equations of continuity,
conservation of momentum and conservation of energy are changed to account for the
changing mesh velocity.

ρ,t + (ρ[ui − ẋi]),i = 0 (36)

[ρuj ],t + [ρ(ui − ẋi)uj ],i + P,j = τij,i + bj (37)

[ρetot]t + [ρ(ui − ẋi)etot],i + [(ui − ẋi)P ],i = [τijuj ],i − qii + bjuj + γ (38)

This means that the advective flux portion of the equations is modified

F advi = (ui − ẋi)U + P

 0
δij

(ui − ẋi)

 (39)

The addition of these terms are reflected in the transformation matrices Ai that relate
the advective flux vector to spatial derivative of the solution vector Yi. For a complete
modification of all of these transformation matrices in Arbitrary Lagrangian-Eulerian for-
mulation see Appendix B.

With these modifications, the Eulerian formulation is converted to Arbitrary Lagrangian-
Eulerian and can account for mesh velocity in the solution.

6
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2.3 Structural Dynamics Equations

The weak form of the structural dynamics equation is[4]:

(w, ρ)(w, ü) + a(w, u) = (w, f ) + (w, h)Γ (40)

where u represents displacement, a represents the strain energy inner product, f are
the prescribed body forces and h the prescribed Neumann boundary forces, and w is any
arbitrary weight function. More commonly , the discrete equations of motion are given as
opposed to the variational form. In structural dynamics, the equations of motion for the
structural system are often expressed in the form

Md̈+ Cḋ+Kd = F (41)

In these equations, M represents the mass, C represents damping, and K represents
internal energy transferred into the structure due to deformation. This statement is equiva-
lent to Newtons law of motion. In the FEM formulation, d is a vector of nodal displacements
of the system, F is a vector of the forces acting on the nodes, while M is the mass matrix,
C is the damping matrix, and K is the stiffness matrix of the structure.

These matrices are calculated at the element level and assembled to create the global
mass, damping, and stiffness matrices for the system. At the element level, the mass matrix
is found

me
ab =

∫
Ωe

NaρNb (42)

This is found through numerical integration of the element according to

me
ij =

ngauss∑
i=1

ngauss∑
j=1

Wdet(J)NiρNj (43)

This particular formation of the mass matrix is called the consistent mass matrix. Other
formulations such as the lumped mass matrix are also possible[4].

The discrete form of the stiffness matrix can be derived from the strain energy in the
weak form. The strain energy can be expressed in terms of the elastic coefficients of the
material.

a(w, u) = w(i,j)cijklu(k,l) (44)

This can be expressed equivalently in terms of the infinitesimal strain tensor and ma-
terial elastic moduli matrix as

a(w, u) =

∫
Ω
ε(w)TDε(u)dΩ (45)

7
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This infinitesimal strain tensor can be expressed in terms of element shape function
derivatives such that

ε(NAei) = BAei (46)

where ei represents the ith column vector of the identity matrix. B is a matrix of the
element shape function spatial derivatives

BA =



NA,1 0 0
0 NA,2 0
0 0 NA,3

0 NA,3 NA,2

NA,3 0 NA,1

NA,2 NA,1 0

 (47)

The stiffness is the integral of the strain energy inner across the domain, found at the
global equation number PQ as

KPQ = eTi

∫
Ω
BT
ADBBdΩej (48)

This can be calculated at the element level as

ke =

∫
Ωe

BTDBdΩe (49)

This is most commonly done with numerical integration using Gaussian quadrature so
that

ke =

ngauss∑
i=1

det(J)WBTDB (50)

Performing this integration numerically requires calculating the B matrices for each
shape local equation number

keab =

ngauss∑
i=1

det(J)WBT
aDBb (51)

This can be expressed alternatively in terms of the Lamé constants so that

kePQ = keiajb =

ngauss∑
i=1

det(J)WNa,kcijklNb,l (52)

After calculating the stiffness matrix for each individual element, the global stiffness
matrix for the system is assembled. This is referred to as the direct stiffness method.

8
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The damping matrix C is assembled as a linear combination of the mass and stiffness.
This is called the Rayleigh damping matrix[5].

C = aM + bK (53)

The coefficients b and a are chosen to give the desired damping characteristics to the
system. Commonly the damping coefficients are based on the damping ratio desired at the
natural frequency of the modes the system.

ζn = a+ bωn (54)

This means that the desired damping ratio at at least two modes of the system must
be known to solve for the unknowns a and b. This also requires knowledge of the natural
frequencies of the system at these modes. Generally, the lowest frequency mode and highest
frequency mode of interest are used[5]. To determine the natural frequencies of the system
eigenvalue analysis can be performed. However, determining eigenvalues of the entire
system can be computationally expensive. An approximation is made for this solver that
the lowest and highest eigenvalues in any element correspond to the lowest and highest
eigenvalues of the system. The natural frequency of free vibration, ω, is found from the
corresponding eigenvalue, p, according to[6]

p2
i = ω2

i (55)

With the formation of K, C and M the equations of motion of the system have been
formed. The system must be constrained using boundary conditions to complete the def-
inition of the problem. The zero displacement boundary condition is the only boundary
condition allowed for the structure in the solver implemented. The method used is a
reduced system, or reaction recovery system. This means that the global equations corre-
sponding to zero displacement are reduced to zero in the system, and one on the diagonal.
This means the contribution from these nodes becomes a trivial equation. A small exam-
ple is demonstrated for a three by three system. We assume that the displacement u3 is
a known zero displacement boundary condition. The full system is shown first, and the
reduced system is shown below it.

m11 m12 m13

m21 m22 m23

m31 m32 m33

ü1

ü2

ü3

 +

c11 c12 c13

c21 c22 c23

c31 c32 c33

u̇1

u̇2

u̇3

 +

k11 k12 k13

k21 k22 k23

k31 k32 k33

u1

u2

u3

 =

f1

f2

f3

 (56)

m11 m12 0
m21 m22 0

0 0 1

ü1

ü2

0

 +

c11 c12 0
c21 c22 0
0 0 1

u̇1

u̇2

0

 +

k11 k12 0
k21 k22 0
0 0 1

u1

u2

0

 =

f1

f2

0

 (57)

9
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With the formulation of the system complete, a time integration method must be
selected to determine the solution of the problem. The generalized alpha method can be
used to determine the solution of the problem[7].

The equations of motion in the discrete form are used to form a residual equation.

Md̈+ Cḋ+Kd− F = Rs (58)

With known initial conditions, the solution at the next time step is predicted with a
constant velocity assumption.

vn+1 = vn (59)

an+1 =
γ − 1

γ
an (60)

dn+1 = dn + ∆tvn +
∆t2

2
((1− 2β)an + 2βan+1) (61)

The values of the variables and the residual are then found at intermediate time steps.

dn+αf
= dn + αf (dn+1 − dn) (62)

vn+αf
= vn + αf (vn+1 − vn) (63)

an+αm = an+1 + αm(an+1 − an) (64)

Rn+1 = R(dn+αf
, vn+αf

, an+αm) (65)

This is iterated to improve the values for the solution according to:

∂R

∂an+1
∆a = −Rn+1 (66)

The residual of the partial derivative of the residual of the time step in terms of the
acceleration is found according to:

∂R

∂an+1
= αmM + αf∆tC + αfβ(∆t2)K (67)

Then the incremental correction ∆a is solved for using the GMRES method. This
correction is used to update the variables at the next time step according to:

ai+1
n+1 = ain+1 + ∆a (68)

10
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vi+1
n+1 = vin+1 + γ∆t∆a (69)

di+1
n+1 = din+1 + β(∆t2)∆a (70)

This iterative process is repeated until the norm of the residual of the system is reduced
below a desired value.

2.4 Mesh Correction

A variety of strategies exist to correct the mesh when a prescribed deformation occurs.
Some of these range in complexity from minimizing the change in the determinant of the
Jacobian of each element to simply displacing the nodes with the same angular displacement
equally across the mesh. The strategy adapted here is to treat the mesh correction as a
prescribed displacement structural FEM problem. This problem then takes the form:

Ku = F (71)

where K is a stiffness matrix, u is a vector of the mesh nodal displacements and F is a
force vector. The applied forces where nodal displacements are unknown are initially set to
zero. The simple three by three example for reduction will be used again to illustrate this
process. Lets take u1 as the known displacement from the structural deformation. The
original system takes the form[8]:k11 k12 k13

k21 k22 k23

k31 k32 k33

u1

u2

u3

 =

f1

f2

f3

 (72)

The system is partially reduced where the displacements are known to a trivial equation.
The forces are modified to make the trivial equation reflect the prescribed displacements.
For the example system, this is 1 0 0

k21 k22 k23

k31 k32 k33

u1

u2

u3

 =

u1

f2

f3

 (73)

Next, the force modification due to prescribed displacements is found. This means that
forces corresponding to locations where the displacement is unknown are modified due to
the prescribed displacements. 1 0 0

k21 k22 k23

k31 k32 k33

u1

u2

u3

 =

 (u1)
(f2 − k21u1)
(f3 − k31u1)

 (74)
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With force modification complete, the system is fully reduced. This means that columns
corresponding to known displacements are zeroed out.1 0 0

0 k22 k23

0 k32 k33

u1

u2

u3

 =

 (u1)
(f2 − k21u1)
(f3 − k31u1)

 (75)

This leaves a linear equations for the unknown displacements in the mesh. This equation
is then solved for using GMRES.

2.5 Loose Coupling Mechanism of Fluid-Structure Interaction

The structure equations and fluid equations are loosely coupled by interaction of their
residuals. The fluid forces acting on the structural body are passed to the structure model
as nodal forces along the fluid-structure boundary. The deformation of the structure is
passed to the fluid model as nodal velocity data. The deformation of the structure thus
alters the fluid residual, resulting in an updated fluid solution. Likewise, the updated fluid
solution results in new forces acting on the structural body, changing the residual of the
structural model, and resulting in new displacement data.

A solution within tolerance for each time step is found in a highly iterative process.
The fluid solution is resolved first. The solution is iterated until it is within tolerance. The
fluid forces on the structural body are then passed to the structure as nodal forces. The
structure solution is then resolved. The deformation of the structure is used to deform the
mesh. Nodal velocity data from the mesh is then passed back to the fluid model. The
fluid is solved again with this nodal velocity data to generate the new resultant forces for
the structure model. This process is iterated until the change in fluid forces and structural
deformation between iterations is negligible. At this point, the solution for the time step
has converged.

The aerodynamic forces are resolved in PHASTA using the consistent boundary flux
calculation technique. This technique solves for the viscous and heat flux on a boundary
where the discrete solution for primitive variables is known[9].

The consistent boundary flux calculation treats the flux vector, f, consisting of the
boundary viscous flux τijnj and heat flux −qini as an unknown variable. In these equations,
the subscript w refers to the surface on the boundary where we are interested in resolving
the fluxes.

fflux =

 0
τijnj
−qini

 = Fwni (76)

This variable is then solved for according to the weak Galerkin formulation as
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∫
Γw

WffluxdΓ+

∫
Γ−Γw

WFw(U)nidΓ =

∫
Ω
W ·U ,tdΩ−

∫
Ω
W ,i·F idΩ−

∫
Ω
W ·ϕdΩ+

∫
Γ
W ·F inidΓ

(77)
The heat flux terms are not necessary for the structure, but the coupled system can

be approximated based on the consistent boundary flux calculation technique as a system
where

Md̈+ Cḋ+Kd = τijnj (78)

3 Computer Implementation of Equations

This section provides very specific detail at a variable level necessary for the implementation
of the necessary subroutines for FSI in PHASTA. A more broad overview is provided in
a hierarchy of subroutines for each section. The implementation required the creation of
a new structural dynamics solver for PHASTA, ALE modification of existing PHASTA
subroutines, creation of a new mesh corrector for PHASTA, and creation of interfaces for
the fluid solver, structure solver, and mesh corrector.

This is not an exhaustive list of the functionality and subroutines contained in PHASTA,
but a brief overview of the most important subroutines.

3.1 Fluid Equations

The solution of the Navier-Stokes equations in PHASTA occurs on on five main levels.
At the highest level, the solver loops through time steps, acquires solutions, and updates
solution values according to input. At the level below this, the solution is found using either
the GMRES method or the Matrix Free Galerkin method as specified by input. Below this
level, blocks of element data are assembled and placed in appropriate data structures.
Below this, element blocks are broken down into individual elements. At the lowest level,
individual elements are used for computation of the components of the residual, and the
tangent matrix of the residual. A hierarchy diagram for important subroutines in PHASTA
is shown in Figure 1. Subroutines added to PHASTA for the solution of structural dynamics
are colored in green, while subroutines added for mesh correction are shown in yellow.

Five important subroutines correspond to the five main levels of the solution. At
the highest level, itrdrv. The main subroutine at the solution level for a sparse GMRES
solve is solgmrs. At the element block level, the subroutine elmgmrs is used to assemble
data. Within element blocks, the subroutine asigmr is used to assemble element data to
corresponding global equation numbers. At the element level, the subroutine e3 is used
to calculate the residual and tangent information for each individual element according to
(19).
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Figure 1: Hierarchy Diagram of Important PHASTA Subroutines

At the top level, itrdrv loops through time steps. For each time time step, it first
predicts the solution at the next time step by calling the subroutine itrpredict as shown in
Figure 3.

Within each time sequence, itrdrv follows the sequence of solves and updates specified
by the user. Itrdrv loops through the sequence and performs a check to determine if a solve
or update is occurring and which solver to use. The check for whether a solve or update is
occurs as seen in Figure 4. In itrdrv, the variable Y is used to store the solution variables,
corresponding to the Y vector in (22).

When the solution for the fluid using a sparse GMRES solver is desired, the subroutine
solgmrs is called from itrdrv as seen in Figure 5. This assembles the global tangent of the
residual as the variable lhsk, equivalent to MAB in 34, and the a diagonalized version of
the tangent matrix, BDiag, for the GMRES solve.

The flow solution variables at the end of the time step are contained in the vector y,
while the solution variables at the beginning of the time step are contained in the vector
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Figure 2: Solution Process for Fluid Dynamics

Figure 3: Predictor Phase in ITRDRV.f

yold. The nodal coordinates are contained in the vector x, and the vector ForcesX contains
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Figure 4: Sequence Check in ITRDRV.f

Figure 5: Sparse GMRES call in ITRDRV.f

the fluid forces to be passed to the structural solver. The tangent matrix is contained in
the sparse data structure lhsk, while the residual is the vector res. Res is equivalent to the
global residual in (28).

After the solution has been iterated the desired number of times, itrdrv calls itrcorrect
to convert the variables from the solution at the intermediate time step to the variables at
the end of the time step. Finally, the solution variables are placed in the yold vector for
use as the starting values at the next time step. This process is detailed in (29) through
(35). The function calls are shown in Figures 6 and 7.

These steps represent the solution process at the time and step sequence level. At
the solution level, sparse data structures are used with the GMRES method within the
subroutine solgmrs. Within this subroutine, the tangent stiffness matrix and residual are
formed by calling elmgrs. The block diagonal of the tangent stiffness matrix is LU factorized
and used to precondition the tangent stiffness and residual. GMRES is then applied to this
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Figure 6: ITRCORRECT call in ITRDRV.f

Figure 7: ITRUPDATE call in ITRDRV.f

system using a set number of Krylov vectors to determine the correction to the solution
variables.

Within elmgrs the tangent stiffness and residual terms for blocks of elements are as-
sembled to the global terms. The global mesh is divided into blocks, each containing a
set number of elements to give best performance on a given architecture. Elmgrs loops
through these blocks and calls the subroutine asigmr to determine the tangent stiffness
term for elements within the block, defined as the variable EGMass at the element level.
The residual terms are also calculated. The loop through element blocks and call to asigmr
is shown in Figure 8.

The element tangent stiffness EGMass is used to fill the sparse global tangent stiffness
matrix lhsk using the subroutine fillsparse, with row and col as vectors used for the global
equation number index of each term, as shown in Figure 9. The residual information, resl
at the element level, is assembled to the global residual using the subroutine local. Resl is
equivalent to the local element stiffness expressed in (26).

The subroutine asigmr localizes the mesh location data in x and the solution variables
in y to the element level for calculation of element residual and tangent stiffness. Then
the subroutine e3 is called to calculate the residual and tangent stiffness for each element.
The localization of variables and call to e3 is shown in Figure 10. Then the localization
process is reversed to assemble the residual, and the block diagonal of the tangent stiffness
matrix is formed.

Within the subroutine e3, element level calculations are performed to find the resid-
ual and tangent stiffness matrix for each element. This is done in a loop over Gaussian
quadrature points for the element. At each Gaussian quadrature point the integration vari-
ables, for example shape function derivatives, needed for the calculations are determined in
e3ivar. The A matrices necessary to relate the advective flux term to the solution variable
are calculated in e3mtrx. These two subroutines are called as shown in Figure 11. Further
subroutines calculate the contribution to the residual and tangent stiffness from convective,
mass, and least squares terms.
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Figure 8: Loop Through Element Blocks

Figure 9: Sparse Data Structure Fill
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Figure 10: Localization of variables and e3 call

19



www.manaraa.com

Figure 11: Quadrature Point Loop in e3.f
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3.2 ALE Modification of Fluid Equations

The fluid equations are modified to account for mesh velocity at the element level. The
mesh velocity is found by dividing the deformation of the mesh by the time step after the
mesh solver returns a value. These velocities are localized in the subroutine asigmr.

At the element level, mesh velocity is found at the quadrature point in the subroutine
e3ivar with the statements seen in Figure 12. This change corresponds to the one detailed
in (39) at the element level.

Figure 12: Mesh velocity at Quadrature Point Determination

These mesh velocities are then used to modify the A matrices in the subroutine e3mtrx.
This accounts for the necessary change shown (39) being reflected in the transformation in
(22) and (23). An example for the matrix A0 can be seen in Figure 13. For the complete
modification, see Appendix B.

Figure 13: Modificiation of A1 for Mesh Velocity

3.3 Structural Equations

A hierarchy of the basic solution structure for the structural dynamics solver is shown in
Figure 14.

Structural elements are determined by element type. This solver assumes all structural
elements are linear hexahedra and that all linear hexahedra are structural elements. Ideally,
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Figure 14: Solution Process for Structural Dynamics

this would be accomplished in the pre-processing phase. However, to keep work on the pre-
processor from diverting work from PHASTA, the decision was made to use element type
to determine the physics. The mesh data is separated into element blocks in the subroutine
genadj. Within this subroutine, all linear hexahedra are flagged as structural elements by
setting the variable material to 2 for the corresponding element block. All other elements
are given the material flag 1 and assumed to be fluid elements. Nodal connectivity is stored
in arrays ienf and iens for the fluid and structure respectively.

The structural equations are implemented in a manner that mirrors the fluid equations.
The structural solver, the subroutine solgmrstr, is called from the subroutine itrdrv. This
subroutine forms the global tangent stiffness matrix of the residual by calling the subroutine
elmgmrstr. The residual is calculated and solgmrstr uses the GMRES method to find the
appropriate change in the solution vector for the most accurate solution at the end of
the time step. At the global level, the stiffness matrix K is stored in sparse format as
the variable BigK, corresponding to K in (41). The consistent mass matrix is stored in
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sparse format as the variable BigM, corresponding to M in (41), and the Rayleigh damping
matrix is stored as the variable BigC, corresponding to C in (41). The appropriate tangent
stiffness matrix for the residual using the generalized alpha method is stored as BigMstar,
and the block diagonal of this matrix is stored as BDiagSTR. BigMstar is the derivative
of the residual expressed in (67). The solution variables consist of the nodal displacement,
stored as the vector ustr, the nodal velocity, stored as the vector udotstr, and the nodal
acceleration, stored as the vector uaclstr. The residual of the structural equations of
motion is stored in the vector resSTR. The nodal forces generated by the fluid acting on
the structure are passed into solgmrstr in the variable ForcesX.

The subroutine elmgrstr loops over element blocks. Within the loop for each element
block, the subroutine asimgrstr is called to form the components of the tangent stiffness
matrix and calculate their contribution to the global tangent stiffness matrix.

Within the subroutine asigmrstr, the subroutine e3str is called to form the local stiff-
ness, constant mass and damping matrices for each element. The local matrices are then
assembled to their global sparse counterparts using the subroutine fillsparsestr. The sub-
routine fillsparsestr also reduces the system of equations to account for zero displacement
boundary conditions by setting the entries to zero on the off diagonal terms where zero
displacement boundary conditions are present. The zero displacement boundary conditions
are determined using the input variable scalar 2 in PHASTA. It is assumed to be a zero
displacement boundary condition wherever this variable is set on a structural node.

The subroutine e3str forms the element stiffness matrix as the variable kl, the element
damping matrix as the variable cl, and the element consistent mass matrix as the variable
ml. This is done with a loop through element quadrature points as shown in (52). First, the
shape function and shape function derivative values at the quadrature point are found using
the subroutines getshp and e3ivarstr. The components of the tangent stiffness are formed
in the subroutines e3mtrxstr and e3mtrxstr2. The stiffness matrix is formed assuming an
isotropic homogenous material using the direct stiffness method. The consistent mass is
formed through direct numerical integration of the element mass equation. The subroutine
e3mtrxstr2 is used for the portion of the computation of the element stiffness that occurs
after the loop through quadrature points. This subroutine also assembles nodal values of
the element mass and stiffness matrix.

Within each time step, the subroutine itrcorrectstr is used to update the values of the
solution at the next time step and then the intermediate time step values of the solution for
the nodal displacement, velocity, and acceleration. This is the same process summarized
in (62), (63), (64), and (65). After the prescribed number of iterations per time step has
been completed, these solutions are updated using the subroutine itrupdatestr.

3.4 Mesh Correction

A hierarchy of the basic solution structure for the mesh correction is shown in Figure 15.
The mesh correction takes the form a prescribed displacement structural problem. The
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Figure 15: Solution Process for Mesh Correction

computational structure is deliberately made to follow the basic architecture of the fluid
solver and structural solver. When a mesh correction is required, the subroutine solgmrALE
is called from itrdrv.

Solgmrale solves the basic linear static structural displacement problem by forming
a global stiffness matrix K through a call to the subroutine elmgrmALE. Displacment
boundary condition force modification is then used to determine the applied forces for the
system, and the correct displacement solution to satisfy the stiffness equation is found
using the GMRES method.

The subroutine elmgrmALE contains a loop over the element blocks. Within the loop,
a call is made to the subroutine asigmrALE, where the assembly of the global stiffness
matrix and reduction for conversion to displacement force boundary conditions occurs.
Asigmrale localizes the mesh coordinate data, and calls the subroutine e3ALE to form
element stiffness matrices. These stiffness matrices are then assembled the global stiffness
matrix using the subroutine fillsparseALE. The block diagonal of the global stiffness matrix
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is also formed as BDiagALEl and assembled the global block diagonal, BDiagALE.
The element stiffness is modified based on the element volume so that the smaller ele-

ments are stiffer and experience lesser deformations. This is done by giving identical Lamé
constants for all elements, and modifying these constants by dividing by the determinant of
the Jacobian of the element. Smaller elements have a smaller determinant of the Jacobian,
and thus retain more stiffness than larger elements.

Modification of the equations for displacement force boundary conditions occurs in two
phases. The first phase occurs during assembly from local to global stiffness matrix. Dur-
ing this assembly process in the subroutine fillsparseALE, a check is used to determine
where the PHASTA input variable scalar 3 is set. Wherever this variable is set, displace-
ment boundary conditions are assumed. The rows of the stiffness matrix corresponding
to these nodes are set to zero on off diagonal terms and one on the diagonal. The force
vector for the mesh deformation is then modified so that force terms are set equal to pre-
scribed displacements. The result is a reduced system with trivial equations for prescribed
nodal displacements. The altered sparse matrix is then multiplied by the prescribed dis-
placement vector to determine the corresponding force vector for the solution. The second
phase is the reduction of the columns of the sparse stiffness matrix corresponding to pre-
scribed displacements. The subroutine fullreduceALE is used to accomplish this. With
the corresponding displacement boundary condition force vector formed and the system of
equations fully reduced, the correct prescribed displacement boundary condition solution
can be solved for.

3.5 Interfaces

The creation of several interfaces for the communication between the fluid solver, the struc-
tural solver, and the mesh corrector was necessary. These interfaces all require knowledge
of the nodes which apply to the respective physics. This was accomplished by implementing
a new subroutine, divvyibc. This subroutine loops through the global nodes and identifies
nodes that belong to both the structural and fluid solver. These nodes are placed in the
array FSmap, which identifies the relation of the fluid node number to the corresponding
structure node number, and is zero when an interface is not present. The subroutine flux is
used to determine aerodynamic forces in a given time step, and a new subroutine forcesxto-
forcesxs was used to map these forces to the appropriate structure nodes. After completion
of the structural solver, the new subroutine itrdbcale uses the structural displacements as
prescribed displacement boundary conditions for the mesh, and passes these values to the
mesh corrector.
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4 Results

4.1 Verification

To complete the overall solution of any FSI problem, the solver must solve the fluid equa-
tions, apply aerodynamic forces to the structural body, solve the structural dynamics
equations, apply displacements to the mesh, correct the mesh to maintain positive volumes
throughout the displacement, and adapt the fluid equations for mesh displacement. This
means there are three solvers that must work, and three interfaces between solvers. For
this purpose, a series of unit tests were performed to ensure that each solver and interface
were working as expected. To verify the fluid solution, a simple unit problem was com-
pared after modification of the code to ensure that the fluid solution was the same within
machine tolerance to an unmodified version of PHASTA.

The other unit tests are discussed in more detail.

4.2 Verification of ALE Fluid Solution

Two unit tests were performed to verify the ALE adaptation of the fluid equations. One
unit test was performed to determine if the solution of a simple Poiselle flow problem in a
0.1m cube could be performed with prescribed mesh displacements and velocities on interior
nodes to match the solution of the same problem with no mesh displacement or velocity.
This ensures that the fluid solver correctly accounts for mesh velocity in determining the
fluid solution. The test case is shown in Figure 16.

For the test, the Poiselle flow test case was run with no mesh velocity to produce a
baseline solution. Next, mesh velocities were added to the interior nodes in a direction
parallel to the flow, with the displacement highest in the center. The displacement was
assigned using a sin function varying with time step number:

−(0.1− x)xsin((0.1)n− 1) (79)

The fluid solver was able to correctly resolve the solution with these mesh velocities,
confirming that the ALE modification allows PHASTA to account for non-zero mesh ve-
locity and displacement.

The second unit test for the ALE modification was to perform displacement of the
boundary to determine if fluid velocity was correctly altered by a moving boundary. The
code is designed only to implement moving boundaries on the fluid structure interface,
where a no slip boundary condition will be present. This means that fluid velocity that is
non-zero relative to the frame of the fluid-structure boundary will be non-zero relative to
the fluid frame when the structure is moving. This velocity must be imparted to the fluid.

To verify that this is occurring, a test case of static flow within a 1m cube was created.
Within the center of the cube is a cylinder with a 10cm diameter. This cylinder is displaced
to simulate a moving structure boundary. The case produces a flow velocity in the same
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Figure 16: Poiselle Test Case for Prescribed Mesh Motion

direction of the displacement of the cylinder, verifying that no slip boundary velocities are
imparted to the flow.
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Figure 17: Demonstration of Velocity Imparted to Flow from Moving Boundary
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4.3 Verification of Structural Model and Solutions

The first step in verification of the structural solution was verification that the mass and
stiffness matrices formed by the solver were correct. This was done.

A simple test case of a 0.1m cube under compression was used to verify the solution
of the structural model. These results were compared to the static solution of the same
case and the dynamic results from FEAPpv[11]. A two dimensional representation of the
problem rendered by FEAPpv is shown in Figure 18.

Figure 18: Test Problem with Boundary Conditions from FEAPpv

The cube is given a modulus of elasticity of 195000 Pa with a Poisson ratio of 0.265. A
force of the cube in the positive direction of 0.1N is placed on each corner of the cube on
the face x=0. The face x=0.1 is constrained with a zero displacement boundary condition.
The static solution of the displacement in one dimension can be found from:

δ =
FL

AE
(80)

The maximum displacement from the dynamic results will be larger, and oscillate
near this static equilibrium value. Time varying displacement of the solution returned by
the structural solver are compared with time varying solutions of displacement returned
from FEAPpv. The structural solver implemented in PHASTA uses the generalized alpha
method with time integration constants αf and αmequal to one, which is equivalent to
the Newmark method used by FEAPpv. These results are on the same order of magni-
tude and exhibit similar behavior. The time step was 100 micro-seconds for both solvers.
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The volume was meshed with one hexahedra in fear and four hexahedra in PHASTA. The
maximum displacement returned by FEAPpv was 109.6 micrometers, while the maximum
displacement returned by PHASTA was 89.2 micrometers. Differences are the result of
variation in the mesh formed by FEAPpv and the mesh formed for PHASTA, and are
within the second order of accuracy expected. The frequency of oscillation of the structure
returned by FEAPpv is approximately 47.4 Hz, while the frequency of oscillation from
PHASTA results is approximately 50 Hz. Results are similar enough to grant confidence
that the structural solver implemented in PHASA is working as expected. The results from
PHASTA and FEAPpv are shown in Figure 19.

Figure 19: Structural Dynamics Test Case Results from FEAPpv (solid) and Phasta
(dashed)

These results verify the structural solver is able to resolve a simple test problem with
small displacements.
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4.4 Verification of Mesh Correction

The mesh must correct due to deformation caused by structural displacements to prevent
inversion of volume elements, which would invalidate the solution. This is verified in a
unit test in which the wall of a 0.1m cube is displaced in the x direction. The nodal
displacements calculated by the mesh correction must not result in inversion of volume
elements while accounting for prescribed displacements. Further, the mesh displacement
must maintain prescribed zero displacement boundary conditions, which for this test case
was all other faces of the cube.

The test was successful in meeting these criteria for the test case until a deformation
of approximately 0.025m was enforced. This is approximately the length of the largest
elements on the deforming boundary. Beyond this point, boundary conditions could no
longer be satisfied. The test was successful in demonstrating successful mesh correction for
small displacements. The mesh corrections calculated up to the point of failure are shown
in the Figure 20

31



www.manaraa.com

Figure 20: Mesh Correction for Increasing Deformation
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4.5 Verfication of Fluid Structure Interaction Behavior

A simple unit test was created to verify fluid and structure sections of the mesh were
separated correctly and assigned to the correct solver. This test was also used to verify
the interface of the solvers between each other. These interfaces consist of the passing of
the aerodynamic forces from the structural solver to the fluid solver, the passing of the
structural displacements to the mesh correction, and the passing of mesh velocities to the
fluid solver. The geometry of the model is shown in Figure 21.

Figure 21: Interface Verification Test Geometry

The test consists of a simple 1m box with stagnant flow for the fluid. On the face of
the box where y=0, a structure consisting of a 1mx1mx1cm plate is attached. The fluid
interface was confirmed to be working by verifying a total force of 101300 Pa, the pressure
in the fluid section, was passed to the structure nodes. The mesh interface was confirmed
to be working when the resolved structural displacements were passed to the mesh. This
test demonstrates that all the interfaces are working correctly and that the solvers are able
to operate in conjunction.

A second verification test for fluid structure interaction behavior was to place a bluff
structural body in a cross flow. For this test, a square cylinder with a length of 10cm and
height of 20cm was placed in a crossflow with 1m/s velocity. Zero displacement boundary
conditions were placed on the nodes on the square edges of the cylinder. The reaction
of the center of the cylinder to aerodynamic forces present is shown in Figure 22. In the
figure, the center of the cylinder is the small square section enclosed by zero velocity four
elements high by four elements wide.
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Figure 22: Deflection of Square Cylinder due to Aerodynamic Forces
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5 Conclusions

The data structures necessary to implement fluid structure interaction in PHASTA using
an added structural solver and mesh correction are detailed in this document. On a broad
level, this consists of creating a structural dynamics solver, creating a mesh corrector,
and modifying PHASTA to use an ALE formulation for fluid dynamics. These routines
were implemented and tested. These new subroutines are able to add limited capability
to PHASTA to solve linear dynamic structural problems. The mesh is capable of correct-
ing for small displacements of boundaries to prevent inversion of volume elements. The
high fidelity computational fluid dynamics capabilities of PHASTA are maintained. This
approach is limited in scope so that problems of engineering interest concerning fluid struc-
ture may not be resolved adequately. This is largely due to the simplicity of the structural
solver and the mesh correction approach limiting the regime of structural dynamics in
which valid results will be returned. However, the data structure created are valid for a
more robust structural system, and demonstrate that the capability of PHASTA to solve
loosely coupled fluid structure interaction problems. Additional work on the implemen-
tation of PHASTA for FSI should include adding capability to the pre-processor to allow
material flagging so that structural elements are not constrained to linear hexahedra, as
well as adding structural and mesh boundary conditions to the input. Additionally, the
subroutines should allow parallelization. Since the subroutines closely follow the hierarchy
and data structures of PHASTA, this implementation can be accomplished. Issues such as
appropriate load balancing and iteration behavior still need to be examined. With further
work to include a more robust generalized dynamics structural solver and mesh correction
routine, as well as parallelizing the data structures present, application of engineering in-
terest concerning fluid structure interaction could be resolved with high fidelity using this
approach.
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6 Appendix A: Stiffness Matrix Verification

This simple test program for the formulation of the element stiffness matrix was written
for a square hexahedra element with length 0.5 on each edge.

5
%hex s t i f f n e s s t e s t

mu= 7.617 e+10
lambda= 9.695 e+10
WdetJ=1.5625E−05

D=[lambda+2∗mu, lambda , lambda , 0 , 0 , 0 ; lambda , lambda+2∗mu, lambda
, 0 , 0 , 0 ; . . .
lambda , lambda , lambda+2∗mu, 0 , 0 , 0 ; 0 , 0 , 0 ,mu, 0 , 0 ; , 0 , 0 , 0 , 0 ,mu

, 0 ; 0 , 0 , 0 , 0 , 0 ,mu ] ;

X= [ 0 . 1 , − 0 . 1 , 0 ; . . .
0 . 0 5 , − 0 . 1 , 0 ; . . .
0 . 0 5 , − 0 . 1 , . 0 5 ; . . .
0 . 1 , − 0 . 1 , 0 . 0 5 ; . . .
0 . 1 , − 0 . 0 5 , 0 ; . . .
0 . 0 5 , − 0 . 0 5 , 0 ; . . .
0 . 0 5 , − 0 . 0 5 , 0 . 0 5 ; . . .
0 . 1 , −0 . 0 5 , 0 . 0 5 ] ;

%i n t 1

x i=−1/sqrt (3 ) ;
eta=−1/sqrt (3 ) ;
mu=−1/sqrt (3 ) ;

[ N11 , N12 , N13 , N21 , N22 , N23 , N31 , N32 , N33 , N41 , N42 , N43 , N51 , N52 , N53 , . . .
N61 , N62 , N63 , N71 , N72 , N73 , N81 , N82 , N83]= shape func t i onde r i v8 ( xi ,

eta ,mu,X)

[ xxi , xeta , xmu, yxi , yeta , ymu, zxi , zeta , zmu]= shapexder ivs (X, N11 , N12 ,
N13 , . . .

N21 , N22 , N23 , N31 , N32 , N33 , N41 , N42 , N43 , N51 , N52 , N53 , . . .
N61 , N62 , N63 , N71 , N72 , N73 , N81 , N82 , N83 , xi , e ta ,mu) ;
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[ NR11 , NR12 , NR13 , . . .
NR21 , NR22 , NR23 , NR31 , NR32 , NR33 , NR41 , NR42 , NR43 , NR51 , NR52 , NR53

, . . .
NR61 , NR62 , NR63 , NR71 , NR72 , NR73 , NR81 , NR82 , NR83]= s h a p e d e r i v s r e a l

(X, N11 , N12 , N13 , . . .
N21 , N22 , N23 , N31 , N32 , N33 , N41 , N42 , N43 , N51 , N52 , N53 , . . .
N61 , N62 , N63 , N71 , N72 , N73 , N81 , N82 , N83 , xi , e ta ,mu, xxi , xeta , xmu

, yxi , yeta , ymu, zxi , zeta , zmu) ;

Bi1 = makest i f fB (NR11 , NR12 , NR13 , NR21 , NR22 , NR23 , NR31 , NR32 , NR33 ,
NR41 , NR42 , NR43 , NR51 , . . .

NR52 , NR53 , NR61 , NR62 , NR63 , NR71 , NR72 , NR73 , NR81 , NR82 , NR83) ;
Bi1t=transpose ( Bi1 ) ;

k1=WdetJ∗Bi1t ∗D∗Bi1 ;

%i n t 2
x i=−1/sqrt (3 ) ;
eta=−1/sqrt (3 ) ;
mu=1/sqrt (3 ) ;

[ N11 , N12 , N13 , N21 , N22 , N23 , N31 , N32 , N33 , N41 , N42 , N43 , N51 , N52 , N53 , . . .
N61 , N62 , N63 , N71 , N72 , N73 , N81 , N82 , N83]= shape func t i onde r i v8 ( xi ,

eta ,mu,X)

[ xxi , xeta , xmu, yxi , yeta , ymu, zxi , zeta , zmu]= shapexder ivs (X, N11 , N12 ,
N13 , . . .

N21 , N22 , N23 , N31 , N32 , N33 , N41 , N42 , N43 , N51 , N52 , N53 , . . .
N61 , N62 , N63 , N71 , N72 , N73 , N81 , N82 , N83 , xi , e ta ,mu) ;

[ NR11 , NR12 , NR13 , . . .
NR21 , NR22 , NR23 , NR31 , NR32 , NR33 , NR41 , NR42 , NR43 , NR51 , NR52 , NR53

, . . .
NR61 , NR62 , NR63 , NR71 , NR72 , NR73 , NR81 , NR82 , NR83]= s h a p e d e r i v s r e a l

(X, N11 , N12 , N13 , . . .
N21 , N22 , N23 , N31 , N32 , N33 , N41 , N42 , N43 , N51 , N52 , N53 , . . .
N61 , N62 , N63 , N71 , N72 , N73 , N81 , N82 , N83 , xi , e ta ,mu, xxi , xeta , xmu

, yxi , yeta , ymu, zxi , zeta , zmu) ;

Bi2 = makest i f fB (NR11 , NR12 , NR13 , NR21 , NR22 , NR23 , NR31 , NR32 , NR33 ,
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NR41 , NR42 , NR43 , NR51 , . . .
NR52 , NR53 , NR61 , NR62 , NR63 , NR71 , NR72 , NR73 , NR81 , NR82 , NR83) ;

Bi2t=transpose ( Bi2 ) ;

k2=WdetJ∗Bi2t ∗D∗Bi2 ;
%i n t 3
x i=−1/sqrt (3 ) ;
eta=1/sqrt (3 ) ;
mu=−1/sqrt (3 ) ;

[ N11 , N12 , N13 , N21 , N22 , N23 , N31 , N32 , N33 , N41 , N42 , N43 , N51 , N52 , N53 , . . .
N61 , N62 , N63 , N71 , N72 , N73 , N81 , N82 , N83]= shape func t i onde r i v8 ( xi ,

eta ,mu,X)

[ xxi , xeta , xmu, yxi , yeta , ymu, zxi , zeta , zmu]= shapexder ivs (X, N11 , N12 ,
N13 , . . .

N21 , N22 , N23 , N31 , N32 , N33 , N41 , N42 , N43 , N51 , N52 , N53 , . . .
N61 , N62 , N63 , N71 , N72 , N73 , N81 , N82 , N83 , xi , e ta ,mu) ;

[ NR11 , NR12 , NR13 , . . .
NR21 , NR22 , NR23 , NR31 , NR32 , NR33 , NR41 , NR42 , NR43 , NR51 , NR52 , NR53

, . . .
NR61 , NR62 , NR63 , NR71 , NR72 , NR73 , NR81 , NR82 , NR83]= s h a p e d e r i v s r e a l

(X, N11 , N12 , N13 , . . .
N21 , N22 , N23 , N31 , N32 , N33 , N41 , N42 , N43 , N51 , N52 , N53 , . . .
N61 , N62 , N63 , N71 , N72 , N73 , N81 , N82 , N83 , xi , e ta ,mu, xxi , xeta , xmu

, yxi , yeta , ymu, zxi , zeta , zmu) ;

Bi3 = makest i f fB (NR11 , NR12 , NR13 , NR21 , NR22 , NR23 , NR31 , NR32 , NR33 ,
NR41 , NR42 , NR43 , NR51 , . . .

NR52 , NR53 , NR61 , NR62 , NR63 , NR71 , NR72 , NR73 , NR81 , NR82 , NR83) ;
Bi3t=transpose ( Bi3 ) ;
k3=WdetJ∗Bi3t ∗D∗Bi3 ;
%i n t 4

x i=−1/sqrt (3 ) ;
eta=1/sqrt (3 ) ;
mu=1/sqrt (3 ) ;

[ N11 , N12 , N13 , N21 , N22 , N23 , N31 , N32 , N33 , N41 , N42 , N43 , N51 , N52 , N53 , . . .
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N61 , N62 , N63 , N71 , N72 , N73 , N81 , N82 , N83]= shape func t i onde r i v8 ( xi ,
eta ,mu,X)

[ xxi , xeta , xmu, yxi , yeta , ymu, zxi , zeta , zmu]= shapexder ivs (X, N11 , N12 ,
N13 , . . .

N21 , N22 , N23 , N31 , N32 , N33 , N41 , N42 , N43 , N51 , N52 , N53 , . . .
N61 , N62 , N63 , N71 , N72 , N73 , N81 , N82 , N83 , xi , e ta ,mu) ;

[ NR11 , NR12 , NR13 , . . .
NR21 , NR22 , NR23 , NR31 , NR32 , NR33 , NR41 , NR42 , NR43 , NR51 , NR52 , NR53

, . . .
NR61 , NR62 , NR63 , NR71 , NR72 , NR73 , NR81 , NR82 , NR83]= s h a p e d e r i v s r e a l

(X, N11 , N12 , N13 , . . .
N21 , N22 , N23 , N31 , N32 , N33 , N41 , N42 , N43 , N51 , N52 , N53 , . . .
N61 , N62 , N63 , N71 , N72 , N73 , N81 , N82 , N83 , xi , e ta ,mu, xxi , xeta , xmu

, yxi , yeta , ymu, zxi , zeta , zmu) ;

Bi4 = makest i f fB (NR11 , NR12 , NR13 , NR21 , NR22 , NR23 , NR31 , NR32 , NR33 ,
NR41 , NR42 , NR43 , NR51 , . . .

NR52 , NR53 , NR61 , NR62 , NR63 , NR71 , NR72 , NR73 , NR81 , NR82 , NR83) ;
Bi4t=transpose ( Bi4 ) ;
k4=WdetJ∗Bi4t ∗D∗Bi4 ;
%i n t 5

x i=1/sqrt (3 ) ;
eta=−1/sqrt (3 ) ;
mu=−1/sqrt (3 ) ;

[ N11 , N12 , N13 , N21 , N22 , N23 , N31 , N32 , N33 , N41 , N42 , N43 , N51 , N52 , N53 , . . .
N61 , N62 , N63 , N71 , N72 , N73 , N81 , N82 , N83]= shape func t i onde r i v8 ( xi ,

eta ,mu,X)

[ xxi , xeta , xmu, yxi , yeta , ymu, zxi , zeta , zmu]= shapexder ivs (X, N11 , N12 ,
N13 , . . .

N21 , N22 , N23 , N31 , N32 , N33 , N41 , N42 , N43 , N51 , N52 , N53 , . . .
N61 , N62 , N63 , N71 , N72 , N73 , N81 , N82 , N83 , xi , e ta ,mu) ;

[ NR11 , NR12 , NR13 , . . .
NR21 , NR22 , NR23 , NR31 , NR32 , NR33 , NR41 , NR42 , NR43 , NR51 , NR52 , NR53

, . . .
NR61 , NR62 , NR63 , NR71 , NR72 , NR73 , NR81 , NR82 , NR83]= s h a p e d e r i v s r e a l
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(X, N11 , N12 , N13 , . . .
N21 , N22 , N23 , N31 , N32 , N33 , N41 , N42 , N43 , N51 , N52 , N53 , . . .
N61 , N62 , N63 , N71 , N72 , N73 , N81 , N82 , N83 , xi , e ta ,mu, xxi , xeta , xmu

, yxi , yeta , ymu, zxi , zeta , zmu) ;

Bi5 = makest i f fB (NR11 , NR12 , NR13 , NR21 , NR22 , NR23 , NR31 , NR32 , NR33 ,
NR41 , NR42 , NR43 , NR51 , . . .

NR52 , NR53 , NR61 , NR62 , NR63 , NR71 , NR72 , NR73 , NR81 , NR82 , NR83) ;
Bi5t=transpose ( Bi5 ) ;
k5=WdetJ∗Bi5t ∗D∗Bi5 ;
%i n t 6

x i=1/sqrt (3 ) ;
eta=−1/sqrt (3 ) ;
mu=1/sqrt (3 ) ;

[ N11 , N12 , N13 , N21 , N22 , N23 , N31 , N32 , N33 , N41 , N42 , N43 , N51 , N52 , N53 , . . .
N61 , N62 , N63 , N71 , N72 , N73 , N81 , N82 , N83]= shape func t i onde r i v8 ( xi ,

eta ,mu,X)

[ xxi , xeta , xmu, yxi , yeta , ymu, zxi , zeta , zmu]= shapexder ivs (X, N11 , N12 ,
N13 , . . .

N21 , N22 , N23 , N31 , N32 , N33 , N41 , N42 , N43 , N51 , N52 , N53 , . . .
N61 , N62 , N63 , N71 , N72 , N73 , N81 , N82 , N83 , xi , e ta ,mu) ;

[ NR11 , NR12 , NR13 , . . .
NR21 , NR22 , NR23 , NR31 , NR32 , NR33 , NR41 , NR42 , NR43 , NR51 , NR52 , NR53

, . . .
NR61 , NR62 , NR63 , NR71 , NR72 , NR73 , NR81 , NR82 , NR83]= s h a p e d e r i v s r e a l

(X, N11 , N12 , N13 , . . .
N21 , N22 , N23 , N31 , N32 , N33 , N41 , N42 , N43 , N51 , N52 , N53 , . . .
N61 , N62 , N63 , N71 , N72 , N73 , N81 , N82 , N83 , xi , e ta ,mu, xxi , xeta , xmu

, yxi , yeta , ymu, zxi , zeta , zmu) ;

Bi6 = makest i f fB (NR11 , NR12 , NR13 , NR21 , NR22 , NR23 , NR31 , NR32 , NR33 ,
NR41 , NR42 , NR43 , NR51 , . . .

NR52 , NR53 , NR61 , NR62 , NR63 , NR71 , NR72 , NR73 , NR81 , NR82 , NR83) ;
Bi6t=transpose ( Bi6 ) ;
k6=WdetJ∗Bi6t ∗D∗Bi6 ;
%i n t 7
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x i=1/sqrt (3 ) ;
eta=1/sqrt (3 ) ;
mu=−1/sqrt (3 ) ;

[ N11 , N12 , N13 , N21 , N22 , N23 , N31 , N32 , N33 , N41 , N42 , N43 , N51 , N52 , N53 , . . .
N61 , N62 , N63 , N71 , N72 , N73 , N81 , N82 , N83]= shape func t i onde r i v8 ( xi ,

eta ,mu,X)

[ xxi , xeta , xmu, yxi , yeta , ymu, zxi , zeta , zmu]= shapexder ivs (X, N11 , N12 ,
N13 , . . .

N21 , N22 , N23 , N31 , N32 , N33 , N41 , N42 , N43 , N51 , N52 , N53 , . . .
N61 , N62 , N63 , N71 , N72 , N73 , N81 , N82 , N83 , xi , e ta ,mu) ;

[ NR11 , NR12 , NR13 , . . .
NR21 , NR22 , NR23 , NR31 , NR32 , NR33 , NR41 , NR42 , NR43 , NR51 , NR52 , NR53

, . . .
NR61 , NR62 , NR63 , NR71 , NR72 , NR73 , NR81 , NR82 , NR83]= s h a p e d e r i v s r e a l

(X, N11 , N12 , N13 , . . .
N21 , N22 , N23 , N31 , N32 , N33 , N41 , N42 , N43 , N51 , N52 , N53 , . . .
N61 , N62 , N63 , N71 , N72 , N73 , N81 , N82 , N83 , xi , e ta ,mu, xxi , xeta , xmu

, yxi , yeta , ymu, zxi , zeta , zmu) ;

Bi7 = makest i f fB (NR11 , NR12 , NR13 , NR21 , NR22 , NR23 , NR31 , NR32 , NR33 ,
NR41 , NR42 , NR43 , NR51 , . . .

NR52 , NR53 , NR61 , NR62 , NR63 , NR71 , NR72 , NR73 , NR81 , NR82 , NR83) ;
Bi7t=transpose ( Bi7 ) ;
k7=WdetJ∗Bi7t ∗D∗Bi7 ;
%i n t 8

x i=1/sqrt (3 ) ;
eta=1/sqrt (3 ) ;
mu=1/sqrt (3 ) ;

[ N11 , N12 , N13 , N21 , N22 , N23 , N31 , N32 , N33 , N41 , N42 , N43 , N51 , N52 , N53 , . . .
N61 , N62 , N63 , N71 , N72 , N73 , N81 , N82 , N83]= shape func t i onde r i v8 ( xi ,

eta ,mu,X)

[ xxi , xeta , xmu, yxi , yeta , ymu, zxi , zeta , zmu]= shapexder ivs (X, N11 , N12 ,
N13 , . . .

N21 , N22 , N23 , N31 , N32 , N33 , N41 , N42 , N43 , N51 , N52 , N53 , . . .
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N61 , N62 , N63 , N71 , N72 , N73 , N81 , N82 , N83 , xi , e ta ,mu) ;

[ NR11 , NR12 , NR13 , . . .
NR21 , NR22 , NR23 , NR31 , NR32 , NR33 , NR41 , NR42 , NR43 , NR51 , NR52 , NR53

, . . .
NR61 , NR62 , NR63 , NR71 , NR72 , NR73 , NR81 , NR82 , NR83]= s h a p e d e r i v s r e a l

(X, N11 , N12 , N13 , . . .
N21 , N22 , N23 , N31 , N32 , N33 , N41 , N42 , N43 , N51 , N52 , N53 , . . .
N61 , N62 , N63 , N71 , N72 , N73 , N81 , N82 , N83 , xi , e ta ,mu, xxi , xeta , xmu

, yxi , yeta , ymu, zxi , zeta , zmu) ;

Bi8 = makest i f fB (NR11 , NR12 , NR13 , NR21 , NR22 , NR23 , NR31 , NR32 , NR33 ,
NR41 , NR42 , NR43 , NR51 , . . .

NR52 , NR53 , NR61 , NR62 , NR63 , NR71 , NR72 , NR73 , NR81 , NR82 , NR83) ;
Bi8t=transpose ( Bi8 ) ;

k8=WdetJ∗Bi8t ∗D∗Bi8 ;

KH=k1+k2+k3+k4+k5+k6+k7+k8 ;

\begin { l s t l i s t i n g }
function [ NR11 , NR12 , NR13 , . . .

NR21 , NR22 , NR23 , NR31 , NR32 , NR33 , NR41 , NR42 , NR43 , NR51 , NR52 , NR53
, . . .

NR61 , NR62 , NR63 , NR71 , NR72 , NR73 , NR81 , NR82 , NR83]= s h a p e d e r i v s r e a l
(X, N11 , N12 , N13 , . . .

N21 , N22 , N23 , N31 , N32 , N33 , N41 , N42 , N43 , N51 , N52 , N53 , . . .
N61 , N62 , N63 , N71 , N72 , N73 , N81 , N82 , N83 , xi , e ta ,mu, xxi , xeta , xmu

, yxi , yeta , ymu, zxi , zeta , zmu)

J=[ xxi , xeta ,xmu ; yxi , yeta ,ymu ; zxi , zeta , zmu ] ;
j=det ( J ) ;

co f11=yeta ∗zmu−ymu∗ zeta ;
co f12=ymu∗ zxi−yxi ∗zmu ;
co f13=yxi ∗ zeta−zx i ∗yeta ;
co f21=zeta ∗xmu−zmu∗xeta ;
co f22=zmu∗xxi−zx i ∗xmu;
co f23=zx i ∗xeta−xxi ∗ zeta ;
co f31=xeta ∗ymu−xmu∗yeta ;
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co f32=xmu∗yxi−xxi ∗ymu;
co f33=xxi ∗yeta−yxi ∗xeta ;

%j=x x i ∗ cof11+xe ta ∗ cof12+xmu∗ cof13 ;

NR11=(N11∗ co f11+N12∗ co f12+N13∗ co f13 ) / j ;
NR12=(N11∗ co f21+N12∗ co f22+N13∗ co f23 ) / j ;
NR13=(N11∗ co f31+N12∗ co f32+N13∗ co f33 ) / j ;

NR21=(N21∗ co f11+N22∗ co f12+N23∗ co f13 ) / j ;
NR22=(N21∗ co f21+N22∗ co f22+N23∗ co f23 ) / j ;
NR23=(N21∗ co f31+N22∗ co f32+N23∗ co f33 ) / j ;

NR31=(N31∗ co f11+N32∗ co f12+N33∗ co f13 ) / j ;
NR32=(N31∗ co f21+N32∗ co f22+N33∗ co f23 ) / j ;
NR33=(N31∗ co f31+N32∗ co f32+N33∗ co f33 ) / j ;

NR41=(N41∗ co f11+N42∗ co f12+N43∗ co f13 ) / j ;
NR42=(N41∗ co f21+N42∗ co f22+N43∗ co f23 ) / j ;
NR43=(N41∗ co f31+N42∗ co f32+N43∗ co f33 ) / j ;

NR51=(N51∗ co f11+N52∗ co f12+N53∗ co f13 ) / j ;
NR52=(N51∗ co f21+N52∗ co f22+N53∗ co f23 ) / j ;
NR53=(N51∗ co f31+N52∗ co f32+N53∗ co f33 ) / j ;

NR61=(N61∗ co f11+N62∗ co f12+N63∗ co f13 ) / j ;
NR62=(N61∗ co f21+N62∗ co f22+N63∗ co f23 ) / j ;
NR63=(N61∗ co f31+N62∗ co f32+N63∗ co f33 ) / j ;

NR71=(N71∗ co f11+N72∗ co f12+N73∗ co f13 ) / j ;
NR72=(N71∗ co f21+N72∗ co f22+N73∗ co f23 ) / j ;
NR73=(N71∗ co f31+N72∗ co f32+N73∗ co f33 ) / j ;

NR81=(N81∗ co f11+N82∗ co f12+N83∗ co f13 ) / j ;
NR82=(N81∗ co f21+N82∗ co f22+N83∗ co f23 ) / j ;
NR83=(N81∗ co f31+N82∗ co f32+N83∗ co f33 ) / j ;

5

function [ xxi , xeta , xmu, yxi , yeta , ymu, zxi , zeta , zmu]= shapexder ivs (X,
N11 , N12 , N13 , . . .
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N21 , N22 , N23 , N31 , N32 , N33 , N41 , N42 , N43 , N51 , N52 , N53 , . . .
N61 , N62 , N63 , N71 , N72 , N73 , N81 , N82 , N83 , xi , e ta ,mu)

x1=X(1 , 1 ) ;
x2=X(2 , 1 ) ;
x3=X(3 , 1 ) ;
x4=X(4 , 1 ) ;
x5=X(5 , 1 ) ;
x6=X(6 , 1 ) ;
x7=X(7 , 1 ) ;
x8=X(8 , 1 ) ;

y1=X(1 , 2 ) ;
y2=X(2 , 2 ) ;
y3=X(3 , 2 ) ;
y4=X(4 , 2 ) ;
y5=X(5 , 2 ) ;
y6=X(6 , 2 ) ;
y7=X(7 , 2 ) ;
y8=X(8 , 2 ) ;

z1=X(1 , 3 ) ;
z2=X(2 , 3 ) ;
z3=X(3 , 3 ) ;
z4=X(4 , 3 ) ;
z5=X(5 , 3 ) ;
z6=X(6 , 3 ) ;
z7=X(7 , 3 ) ;
z8=X(8 , 3 ) ;

xx i = x1∗N11+x2∗N21+x3∗N31+x4∗N41+x5∗N51+x6∗N61+x7∗N71+x8∗N81 ;
xeta = x1∗N12+x2∗N22+x3∗N32+x4∗N42+x5∗N52+x6∗N62+x7∗N72+x8∗N82 ;
xmu = x1∗N13+x2∗N23+x3∗N33+x4∗N43+x5∗N53+x6∗N63+x7∗N73+x8∗N83 ;

yxi = y1∗N11+y2∗N21+y3∗N31+y4∗N41+y5∗N51+y6∗N61+y7∗N71+y8∗N81 ;
yeta = y1∗N12+y2∗N22+y3∗N32+y4∗N42+y5∗N52+y6∗N62+y7∗N72+y8∗N82 ;
ymu = y1∗N13+y2∗N23+y3∗N33+y4∗N43+y5∗N53+y6∗N63+y7∗N73+y8∗N83 ;

zx i = z1∗N11+z2∗N21+z3∗N31+z4∗N41+z5∗N51+z6∗N61+z7∗N71+z8∗N81 ;
ze ta = z1∗N12+z2∗N22+z3∗N32+z4∗N42+z5∗N52+z6∗N62+z7∗N72+z8∗N82 ;
zmu = z1∗N13+z2∗N23+z3∗N33+z4∗N43+z5∗N53+z6∗N63+z7∗N73+z8∗N83 ;
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5

function [ N11 , N12 , N13 , N21 , N22 , N23 , N31 , N32 , N33 , N41 , N42 , N43 , N51 , N52
, N53 , . . .
N61 , N62 , N63 , N71 , N72 , N73 , N81 , N82 , N83]= shape func t i onde r i v8 ( xi ,

eta ,mu,X)

%c a l c u l a t e the shape f u n c t i o n d e r i v a t i v e s at an i n t e g r a t i o n p o i n t
in we igh t

%space

%ex N11 i s dN1/ dxi , N12 i s DN1/ deta , N13 i s dN1/dmu

N11=−1/8∗(1−eta )∗(1−mu) ;
N12=−1/8∗(1−x i )∗(1−mu) ;
N13=−1/8∗(1−x i )∗(1− eta ) ;
N21=1/8∗(1− eta )∗(1−mu) ;
N22=−1/8∗(1+ x i )∗(1−mu) ;
N23=−1/8∗(1+ x i )∗(1− eta ) ;
N31=1/8∗(1+ eta )∗(1−mu) ;
N32=1/8∗(1+ x i )∗(1−mu) ;
N33=−1/8∗(1+ x i ) ∗(1+ eta ) ;
N41=−1/8∗(1+eta )∗(1−mu) ;
N42=1/8∗(1− x i )∗(1−mu) ;
N43=−1/8∗(1−x i ) ∗(1+ eta ) ;
N51=−1/8∗(1−eta ) ∗(1+mu) ;
N52=−1/8∗(1−x i ) ∗(1+mu) ;
N53=1/8∗(1− x i )∗(1− eta ) ;
N61=1/8∗(1− eta ) ∗(1+mu) ;
N62=−1/8∗(1+ x i ) ∗(1+mu) ;
N63=1/8∗(1+ x i )∗(1− eta ) ;
N71=1/8∗(1+ eta ) ∗(1+mu) ;
N72=1/8∗(1+ x i ) ∗(1+mu) ;
N73=1/8∗(1+ x i ) ∗(1+ eta ) ;
N81=−1/8∗(1+eta ) ∗(1+mu) ;
N82=1/8∗(1− x i ) ∗(1+mu) ;
N83=1/8∗(1− x i ) ∗(1+ eta ) ;

5
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function B = makest i f fB ( n11 , n12 , n13 , n21 , n22 , n23 , n31 , n32 , n33 , n41 ,
n42 , n43 , n51 , n52 , n53 , n61 , n62 , n63 , n71 , n72 , n73 , n81 , n82 , n83 )

B=[n11 , 0 , 0 , n21 , 0 , 0 , n31 , 0 , 0 , n41 , 0 , 0 , n51 , 0 , 0 , n61 , 0 , 0 , n71 , 0 , 0 , n81
, 0 , 0 ; . . .
0 , n12 , 0 , 0 , n22 , 0 , 0 , n32 , 0 , 0 , n42 , 0 , 0 , n52 , 0 , 0 , n62 , 0 , 0 , n72 , 0 , 0 , n82

, 0 ; . . .
0 ,0 , n13 , 0 , 0 , n23 , 0 , 0 , n33 , 0 , 0 , n43 , 0 , 0 , n53 , 0 , 0 , n63 , 0 , 0 , n73 , 0 , 0 ,

n83 ; . . .
0 , n13 , n12 , 0 , n23 , n22 , 0 , n33 , n32 , 0 , n43 , n42 , 0 , n53 , n52 , 0 , n63 , n62

, 0 , n73 , n72 , 0 , n83 , n82 ; . . .
n13 , 0 , n11 , n23 , 0 , n21 , n33 , 0 , n31 , n43 , 0 , n41 , n53 , 0 , n51 , n63 , 0 , n61 ,

n73 , 0 , n71 , n83 , 0 , n81 ; . . .
n12 , n11 , 0 , n22 , n21 , 0 , n32 , n31 , 0 , n42 , n41 , 0 , n52 , n51 , 0 , n62 , n61 , 0 ,

n72 , n71 , 0 , n82 , n81 , 0 ] ;

7 Appendix B: ALE Modified Transformation Matrices

Subroutine e3mtrx modified for ALE
Summary of changes: ui replaced by (ui - xdoti) in the advective term.

5
subrout ine e3mtrx ( rho , pres , T,

& ei , h , a l fap ,
& betaT , cp , rk ,
& u1 , u2 , u3 ,
& A0 , A1 ,
& A2 , A3 ,
& e2p , e3p , e4p ,
& drdp , drdT , A0DC,
& A0inv , dVdY, xdotl , xdot1 , xdot2 , xdot3 )

c
c
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

c
c This rou t in e s e t s up the nece s sa ry matr i ce s at the i n t e g r a t i o n

po int .
c
c input :
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c rho ( npro ) : dens i ty
c pres ( npro ) : p r e s su r e
c T ( npro ) : temperature
c e i ( npro ) : i n t e r n a l energy
c h ( npro ) : enthalpy
c a l f a p ( npro ) : expans i v i t y
c betaT ( npro ) : i s o the rma l c o m p r e s s i b i l i t y
c cp ( npro ) : s p e c i f i c heat at constant p r e s su r e
c c ( npro ) : speed o f sound
c rk ( npro ) : k i n e t i c energy
c u1 ( npro ) : x1−v e l o c i t y component
c u2 ( npro ) : x2−v e l o c i t y component
c u3 ( npro ) : x3−v e l o c i t y component
c
c output :
c A0 ( npro , nflow , nf low ) : A0 matrix
c A1 ( npro , nflow , nf low ) : A 1 matrix
c A2 ( npro , nflow , nf low ) : A 2 matrix
c A3 ( npro , nflow , nf low ) : A 3 matrix
c
c Note : the d e f i n i t i o n o f the matr i ce s can be found in
c t h e s i s by Hauke .
c
c Zdenek Johan , Summer 1990 . ( Modif ied from e2mtrx . f )
c Zdenek Johan , Winter 1991 . ( Fortran 90)
c Kenneth Jansen , Winter 1997 Pr imi t ive Var iab l e s
c
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

c
in c lude ”common . h”

c
c
c passed ar rays
c

dimension rho ( npro ) , pres ( npro ) ,
& T( npro ) , e i ( npro ) ,
& h( npro ) , a l f a p ( npro ) ,
& betaT ( npro ) ,
& cp ( npro ) ,
& rk ( npro ) ,
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& u1 ( npro ) , u2 ( npro ) ,
& u3 ( npro ) , f a c t 1 ( npro ) ,
& A0( npro , nflow , nf low ) , dVdY( npro , 1 5 ) ,
& A1( npro , nflow , nf low ) , A2( npro , nflow , nf low ) ,
& A3( npro , nflow , nf low ) , A0DC( npro , 4 ) ,
& A0inv ( npro , 1 5 ) , d ( npro ) ,
& f a c t 2 ( npro ) , s1 ( npro ) ,
& e1bar ( npro ) , e2bar ( npro ) ,
& e3bar ( npro ) , e4bar ( npro ) ,
& e5bar ( npro ) , c1bar ( npro ) ,
& c2bar ( npro ) , cv ( npro ) ,
& c3bar ( npro ) , u12 ( npro ) ,
& u31 ( npro ) , u23 ( npro )

c
c l o c a l work ar rays that are passed shared space
c

dimension e2p ( npro ) ,
& e3p ( npro ) , e4p ( npro ) ,
& drdp ( npro ) , drdT ( npro )

c DEP added v a r i a b l e s
dimension xdot l ( npro , nenl , nsd ) , xdot1 ( npro ) , xdot2 ( npro ) ,

xdot3 ( npro )
c end DEP added

ttim (21) = ttim (21) − s e c s ( 0 . 0 )
c
c . . . . i n i t i a l i z e
c

A0 = zero
A1 = zero
A2 = zero
A3 = zero

c
c . . . . set up the cons tant s
c
c

drdp = rho ∗ betaT
drdT = −rho ∗ a l f a p
A0 ( : , 5 , 1 ) = drdp ∗ (h + rk ) − a l f a p ∗ T ! e1p

c A0 ( : , 5 , 1 ) = drdp ∗ ( e i + rk ) + betaT ∗ pres − a l f a p ∗ T
! e1p
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e2p = A0 ( : , 5 , 1 ) + one
e3p = rho ∗ ( h + rk )
e4p = drdT ∗ (h + rk ) + rho ∗ cp

c
c
c . . . . Ca l cu la t e A0
c

A0 ( : , 1 , 1 ) = drdp
c A0 ( : , 1 , 2 ) = zero
c A0 ( : , 1 , 3 ) = zero
c A0 ( : , 1 , 4 ) = zero

A0 ( : , 1 , 5 ) = drdT
c

A0 ( : , 2 , 1 ) = drdp ∗ u1
A0 ( : , 2 , 2 ) = rho

c A0 ( : , 2 , 3 ) = zero
c A0 ( : , 2 , 4 ) = zero

A0 ( : , 2 , 5 ) = drdT ∗ u1
c

A0 ( : , 3 , 1 ) = drdp ∗ u2
c A0 ( : , 3 , 2 ) = zero

A0 ( : , 3 , 3 ) = rho
c A0 ( : , 3 , 4 ) = zero

A0 ( : , 3 , 5 ) = drdT ∗ u2
c

A0 ( : , 4 , 1 ) = drdp ∗ u3
c A0 ( : , 4 , 2 ) = zero
c A0 ( : , 4 , 3 ) = zero

A0 ( : , 4 , 4 ) = rho
A0 ( : , 4 , 5 ) = drdT ∗ u3

c
covered above A0 ( : , 5 , 1 ) = drdp ∗ u1

A0 ( : , 5 , 2 ) = rho ∗ u1
A0 ( : , 5 , 3 ) = rho ∗ u2
A0 ( : , 5 , 4 ) = rho ∗ u3
A0 ( : , 5 , 5 ) = e4p

c
f lops = f lops + 67∗npro

c
c . . . . Ca l cu la t e A−t i l d e −1, A−t i l d e −2 and A−t i l d e −3
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c
A1 ( : , 1 , 1 ) = drdp ∗ ( u1 − xdot1 )
A1 ( : , 1 , 2 ) = rho

c A1 ( : , 1 , 3 ) = zero
c A1 ( : , 1 , 4 ) = zero

A1 ( : , 1 , 5 ) = drdT ∗ ( u1 − xdot1 )
c

A1 ( : , 2 , 1 ) = drdp ∗ ( u1 − xdot1 ) ∗ u1 +1
A1 ( : , 2 , 2 ) = rho ∗ ( u1 − xdot1 ) + rho ∗ u1

c A1 ( : , 2 , 3 ) = zero
c A1 ( : , 2 , 4 ) = zero

A1 ( : , 2 , 5 ) = drdT ∗ ( u1 − xdot1 ) ∗ u1
c

A1 ( : , 3 , 1 ) = drdp ∗ ( u1 − xdot1 ) ∗ u2
A1 ( : , 3 , 2 ) = rho ∗ u2
A1 ( : , 3 , 3 ) = rho ∗ ( u1 − xdot1 )

c A1 ( : , 3 , 4 ) = zero
A1 ( : , 3 , 5 ) = drdT ∗ ( u1 − xdot1 ) ∗ u2

c
A1 ( : , 4 , 1 ) = drdp ∗ ( u1 − xdot1 ) ∗ u3
A1 ( : , 4 , 2 ) = rho ∗ u3

c A1 ( : , 4 , 3 ) = zero
A1 ( : , 4 , 4 ) = rho ∗ ( u1 − xdot1 )
A1 ( : , 4 , 5 ) = drdT ∗ u1 ∗ u3

c
A1 ( : , 5 , 1 ) = ( u1 − xdot1 ) ∗ e2p +xdot1 ! ext ra −xdot must

be n u l l i f i e d from P d e r i v a t i v e
A1 ( : , 5 , 2 ) = e3p + rho ∗ ( u1 ) ∗ u1
A1 ( : , 5 , 3 ) = rho ∗ ( u1 ) ∗ u2
A1 ( : , 5 , 4 ) = rho ∗ ( u1 ) ∗ u3
A1 ( : , 5 , 5 ) = ( u1 − xdot1 ) ∗ e4p

c
f lops = f lops + 35∗npro

c
A2 ( : , 1 , 1 ) = drdp ∗ ( u2 − xdot2 )

c A2 ( : , 1 , 2 ) = zero
A2 ( : , 1 , 3 ) = rho

c A2 ( : , 1 , 4 ) = zero
A2 ( : , 1 , 5 ) = drdT ∗ ( u2 − xdot2 )

c
A2 ( : , 2 , 1 ) = drdp ∗ u1 ∗ ( u2−xdot2 )
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A2 ( : , 2 , 2 ) = rho ∗ ( u2−xdot2 )
A2 ( : , 2 , 3 ) = rho ∗ u1

c A2 ( : , 2 , 4 ) = zero
A2 ( : , 2 , 5 ) = drdT ∗ u1 ∗ ( u2−xdot2 )

c
A2 ( : , 3 , 1 ) = drdp ∗ ( u2−xdot2 ) ∗ u2 +1

c A2 ( : , 3 , 2 ) = zero
A2 ( : , 3 , 3 ) = rho ∗ ( u2−xdot2 ) +rho∗u2

c A2 ( : , 3 , 4 ) = zero
A2 ( : , 3 , 5 ) = drdT ∗ ( u2−xdot2 ) ∗ u2

c
A2 ( : , 4 , 1 ) = drdp ∗ ( u2−xdot2 ) ∗ u3

c A2 ( : , 4 , 2 ) = zero
A2 ( : , 4 , 3 ) = rho ∗ u3
A2 ( : , 4 , 4 ) = rho ∗ ( u2−xdot2 )
A2 ( : , 4 , 5 ) = drdT ∗ ( u2−xdot2 ) ∗ u3

c
A2 ( : , 5 , 1 ) = ( u2−xdot2 ) ∗ e2p + xdot2
A2 ( : , 5 , 2 ) = rho ∗ u1 ∗ ( u2 )
A2 ( : , 5 , 3 ) = e3p + rho ∗ ( u2 ) ∗ u2
A2 ( : , 5 , 4 ) = rho ∗ ( u2 ) ∗ u3
A2 ( : , 5 , 5 ) = ( u2−xdot2 ) ∗ e4p

c
f lops = f lops + 35∗npro

c
A3 ( : , 1 , 1 ) = drdp ∗ ( u3−xdot3 )

c A3 ( : , 1 , 2 ) = zero
c A3 ( : , 1 , 3 ) = zero

A3 ( : , 1 , 4 ) = rho
A3 ( : , 1 , 5 ) = drdT ∗ ( u3 −xdot3 )

c
A3 ( : , 2 , 1 ) = drdp ∗ u1 ∗ ( u3 − xdot3 )
A3 ( : , 2 , 2 ) = rho ∗ ( u3 − xdot3 )

c A3 ( : , 2 , 3 ) = zero
A3 ( : , 2 , 4 ) = rho ∗ u1
A3 ( : , 2 , 5 ) = drdT ∗ u1 ∗ ( u3 − xdot3 )

c
A3 ( : , 3 , 1 ) = drdp ∗ ( u3 − xdot3 ) ∗ u2

c A3 ( : , 3 , 2 ) = zero
A3 ( : , 3 , 3 ) = rho ∗ ( u3 − xdot3 )
A3 ( : , 3 , 4 ) = rho ∗ u2
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A3 ( : , 3 , 5 ) = drdT ∗ ( u3 − xdot3 ) ∗ u2
c

A3 ( : , 4 , 1 ) = drdp ∗ ( u3 − xdot3 ) ∗ u3 +1
c A3 ( : , 4 , 2 ) = zero
c A3 ( : , 4 , 3 ) = zero

A3 ( : , 4 , 4 ) = rho ∗ ( u3 − xdot3 ) + rho∗u3
A3 ( : , 4 , 5 ) = drdT ∗ ( u3 − xdot3 ) ∗ u3

c
A3 ( : , 5 , 1 ) = ( u3 − xdot3 ) ∗ e2p +xdot3
A3 ( : , 5 , 2 ) = rho ∗ u1 ∗ ( u3 )
A3 ( : , 5 , 3 ) = rho ∗ u2 ∗ ( u3 )
A3 ( : , 5 , 4 ) = e3p + rho ∗ ( u3 ) ∗ u3
A3 ( : , 5 , 5 ) = ( u3−xdot3 ) ∗ e4p

c
f lops = f lops + 35∗npro
ttim (21) = ttim (21) + s e c s ( 0 . 0 )

c
c . . . . return
c

i f ( idc . ne . 0) then
c . . . . for Discount inu i ty Capturing Term
c
c . . . . c a l c u l a t i o n o f A0ˆDC matrix
c
c . . . . Ref P−163 o f the handout
c

s1 = one /( rho ∗∗2 ∗ betaT ∗ T)
cv = cp − ( a l f a p ∗∗2 ∗ T/rho /betaT )
A0DC( : , 1 ) = ( rho ∗ betaT ) ∗∗2∗ s1
A0DC( : , 2 ) = −rho∗ a l f a p ∗ rho∗betaT∗ s1
A0DC( : , 3 ) = rho/T
A0DC( : , 4 ) = (−rho∗ a l f a p ) ∗∗2 ∗ s1 + ( rho∗cv/T∗∗2)

c
c . . . . c a l c u l a t i o n o f A0ˆ t i l d a ˆ i n v e r s e matrix
c . . . . r e f P−169 o f the hand out
c

f a c t 1 = one /( rho∗cv∗T∗∗2)
d = a l f a p ∗T/rho /betaT
e1bar = h − rk
e2bar = e1bar − d
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e3bar = e2bar − cv ∗ T
e4bar = e2bar − 2∗ cv ∗ T
e5bar = e1bar ∗∗2 − 2∗ e1bar ∗d + 2∗ rk∗cv∗T + cp∗T/rho /betaT
c1bar = u1∗∗2 + cv ∗ T
c2bar = u2∗∗2 + cv ∗ T
c3bar = u3∗∗2 + cv ∗ T
u12 = u1 ∗ u2
u31 = u3 ∗ u1
u23 = u2 ∗ u3
A0inv ( : , 1 ) = e5bar ∗ f a c t 1
A0inv ( : , 2 ) = c1bar ∗ f a c t 1
A0inv ( : , 3 ) = c2bar ∗ f a c t 1
A0inv ( : , 4 ) = c3bar ∗ f a c t 1
A0inv ( : , 5 ) = 1∗ f a c t 1
A0inv ( : , 6 ) = u1∗ e3bar ∗ f a c t 1
A0inv ( : , 7 ) = u2∗ e3bar ∗ f a c t 1
A0inv ( : , 8 ) = u3∗ e3bar ∗ f a c t 1
A0inv ( : , 9 ) = −e2bar ∗ f a c t 1
A0inv ( : , 1 0 ) = u12∗ f a c t 1
A0inv ( : , 1 1 ) = u31∗ f a c t 1
A0inv ( : , 1 2 ) = −u1∗ f a c t 1
A0inv ( : , 1 3 ) = u23∗ f a c t 1
A0inv ( : , 1 4 ) = −u2∗ f a c t 1
A0inv ( : , 1 5 ) = −u3∗ f a c t 1

c
c . . . . . c a l c u l a t i o n o f dV/dY ( d e r i v a t i v e o f entropy v a r i a b l e s w. r .

to p r i m i t i v e
c

f a c t 1 = 1/T
f a c t 2 = f a c t 1 /T
dVdY( : , 1 ) = f a c t 1 / rho
dVdY( : , 2 ) = −f a c t 1 ∗u1
dVdY( : , 3 ) = f a c t 1
dVdY( : , 4 ) = −f a c t 1 ∗u2
dVdY( : , 5 ) = zero
dVdY( : , 6 ) = f a c t 1
dVdY( : , 7 ) = −f a c t 1 ∗u3
dVdY( : , 8 ) = zero
dVdY( : , 9 ) = zero
dVdY( : , 1 0 ) = f a c t 1
dVdY( : , 1 1 ) = −(h−rk ) ∗ f a c t 2
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dVdY( : , 1 2 ) = −f a c t 2 ∗u1
dVdY( : , 1 3 ) = −f a c t 2 ∗u2
dVdY( : , 1 4 ) = −f a c t 2 ∗u3
dVdY( : , 1 5 ) = f a c t 2

e n d i f ! end o f idc . ne . 0

return
end

c
c

subrout ine e3mtrxSclr ( rho ,
& u1 , u2 , u3 ,
& A0t , A1t ,
& A2t , A3t )

c
c
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

c
c This rou t in e s e t s up the nece s sa ry matr i ce s at the i n t e g r a t i o n

po int .
c
c input :
c rho ( npro ) : dens i ty
c u1 ( npro ) : x1−v e l o c i t y component
c u2 ( npro ) : x2−v e l o c i t y component
c u3 ( npro ) : x3−v e l o c i t y component
c
c output :
c A0t ( npro ) : A 0 ” matrix ”
c A1t ( npro ) : A 1 ” matrix ”
c A2t ( npro ) : A 2 ” matrix ”
c A3t ( npro ) : A 3 ” matrix ”
c
c Note : the d e f i n i t i o n o f the matr i ce s can be found in
c t h e s i s by Hauke .
c
c Zdenek Johan , Summer 1990 . ( Modif ied from e2mtrx . f )
c Zdenek Johan , Winter 1991 . ( Fortran 90)
c Kenneth Jansen , Winter 1997 Pr imi t ive Var iab l e s
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c
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

c
in c lude ”common . h”

c
c
c passed ar rays
c

dimension rho ( npro ) ,
& u1 ( npro ) , u2 ( npro ) ,
& u3 ( npro ) ,
& A0t ( npro ) ,
& A1t ( npro ) , A2t ( npro ) ,
& A3t ( npro )

c
i f ( i c o n v s c l r . eq . 2 ) then ! convec t i ve form

A0t ( : ) = one
A1t ( : ) = u1 ( : )
A2t ( : ) = u2 ( : )
A3t ( : ) = u3 ( : )

else ! c on s e r v a t i v e form
A0t ( : ) = rho ( : )
A1t ( : ) = rho ( : ) ∗u1 ( : )
A2t ( : ) = rho ( : ) ∗u2 ( : )
A3t ( : ) = rho ( : ) ∗u3 ( : )

e n d i f

c
c . . . . return
c

return
end
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